

Semester 2
Session 2018/2019

1. The size of a population of insects is increasing at a rate proportional to the number of insects, N , in time t days which satisfies the equation $\frac{d N}{d t}=k N$, where $k>0$. Given that the number of insects at the beginning of an observation is N_{0} and is double in 2 days, find the number of insects after 5 days.
2. Sketch and shade the region bounded by the curve $y=4 e^{-x}$, the straight line $y=4-x, y-$ axis and $x=3$. Hence, find the area of the shaded region by using trapezoidal rule with five ordinates. Give your answer correct to four decimal places.
3. Given a circle $x^{2}+y^{2}+k x+6 y+8=0$, where k is a positive constant.
a) Determine the value of k and the centre of the circle if the radius is $\frac{\sqrt{13}}{2}$ unit.
b) Find the points of intersection of the circle with straight line $y-x+2=0$. Hence, obtain one of the tangent equation at the point of intersection.
4. The continuous random variable X has the cumulative distribution function

$$
F(x)=\left\{\begin{array}{crl}
0, & x & \leq 0 \\
\frac{1}{9}\left(2 x^{2}-\frac{x^{3}}{3}\right) & 0 \leq x & \leq 3 \\
1, & x & \geq 3
\end{array}\right.
$$

a) Find the median
b) Determine the probability density function of X
c) Hence, find the mode and the mean.
d) State the skewness of the distribution with a reason.
5. The amount of cement packed by a machine is normally distributed with mean 39.3 kg and standard deviation 0.9 kg . A bag of cement is randomly selected.
a) Find the probability that the bag weighs more than 40kg.
b) If the probability of the bag weighs not more than mg is 0.95 , determine the value of m .
c) A total of 5 bags of cement are chosen at random. Find the probability that at least 4 bags weigh more than 40 kg .

1. The size of a population of insects is increasing at a rate proportional to the number of insects, N , in time t days which satisfies the equation $\frac{d N}{d t}=k N$, where $k>0$. Given that the number of insects at the beginning of an observation is N_{0} and is double in 2 days, find the number of insects after 5 days.

SOLUTION

$\frac{d N}{d t}=k N$
$\frac{d N}{N}=k d t$
$\int \frac{d N}{N}=\int k d t$
$\ln N=k t+C$
$N=e^{k t+c}$
$N=A e^{k t}$
Given that when

$$
\begin{gathered}
t=0 ; \quad N=N_{o} \\
N_{o}=A e^{k(0)} \\
A=N_{o}
\end{gathered}
$$

$$
t=2 ; \quad N=2 N_{o}, \quad A=N_{o}
$$

$$
2 N_{o}=N_{o} e^{k(2)}
$$

$$
e^{2 k}=\frac{2 N_{o}}{N_{o}}
$$

$$
e^{2 k}=2
$$

$$
2 k=\ln 2
$$

$$
k=\frac{\ln 2}{2}=0.3466
$$

$N=N_{o} e^{0.3466 t}$

When $t=5$:

$$
\begin{aligned}
N & =N_{o} e^{0.3466(5)} \\
& =5.66 N_{o}
\end{aligned}
$$

2. Sketch and shade the region bounded by the curve $y=4 e^{-x}$, the straight line $y=4-x, y-$ axis and $x=3$. Hence, find the area of the shaded region by using trapezoidal rule with five ordinates. Give your answer correct to four decimal places.

SOLUTION

$$
\text { Area }=\int_{0}^{3}(4-x)-\left(4 e^{-x}\right) d x
$$

Given $n=4$

$$
h=\frac{3-0}{4}=0.75
$$

	$y=4-x-4 e^{-x}$	
$x_{0}=0$	0	
$x_{1}=0.75$		1.36053
$x_{2}=1.5$		1.60748
$x_{3}=2.25$	0.80085	1.32840
$x_{4}=3.0$	0.80085	4.29641

$$
\begin{aligned}
\text { Area } & =\frac{h}{2}\left[\left(x_{0}+x_{4}\right)+2\left(x_{1}+x_{2}+x_{3}\right)\right] \\
& =\frac{0.75}{2}[0.80085+2(4.29641)] \\
& =3.5226 \text { unit }^{2}
\end{aligned}
$$

3. Given a circle $x^{2}+y^{2}+k x+6 y+8=0$, where k is a positive constant.
a) Determine the value of k and the centre of the circle if the radius is $\frac{\sqrt{13}}{2}$ unit.
b) Find the points of intersection of the circle with straight line $y-x+2=0$. Hence, obtain one of the tangent equations at the point of intersection.

SOLUTION

(3a)

$$
\begin{array}{lll}
x^{2}+y^{2}+k x+6 y+8=0 \\
2 g=k & 2 f=6 & \\
g=\frac{k}{2} & f=3 &
\end{array}
$$

$r=\sqrt{f^{2}+g^{2}-c}$
$\frac{\sqrt{13}}{2}=\sqrt{3^{2}+\left(\frac{k}{2}\right)^{2}-8}$
$\frac{\sqrt{13}}{2}=\sqrt{1+\frac{k^{2}}{4}}$
$\frac{13}{4}=1+\frac{k^{2}}{4}$
$\frac{k^{2}}{4}=\frac{13}{4}-1$
$\frac{k^{2}}{4}=\frac{9}{4}$
$k=3(k>0)$

Center of the circle $=(-\boldsymbol{g},-\boldsymbol{f})=\left(-\frac{3}{2},-3\right)$
(3b)

Equation of circle

$x^{2}+y^{2}+3 x+6 y+8=0$

Equation of straight line

$$
\begin{align*}
& y-x+2=0 \\
& y=x-2 \tag{2}
\end{align*}
$$

Substitute (2) into (1)

$$
\begin{aligned}
& x^{2}+(x-2)^{2}+3 x+6(x-2)+8=0 \\
& x^{2}+x^{2}-4 x+4+3 x+6 x-12+8=0 \\
& 2 x^{2}+5 x=0 \\
& x(2 x+5)=0 \\
& x=0 \quad \text { or } \quad x=-\frac{5}{2} \\
& y=-2 \quad \text { or } \quad y=-\frac{9}{2}
\end{aligned}
$$

Therefore the intersection points are $(0,-2)$ and $\left(-\frac{5}{2},-\frac{9}{2}\right)$.

Equation of tanget at $(0,-2)$ for $x^{2}+y^{2}+3 x+6 y+8=0$
$x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0$

$$
\begin{aligned}
x_{1}=0 ; y_{1}= & -2 ; g=\frac{3}{2} ; f=3, c=8 \\
& x(0)+y(-2)+\frac{3}{2}(x+0)+3(y-2)+8=0 \\
& -2 y+\frac{3}{2} x+3 y-6+8=0 \\
& y+\frac{3}{2} x+2=0 \\
& 2 y+3 x+4=0
\end{aligned}
$$

or

Equation of tanget at $\left(-\frac{5}{2},-\frac{9}{2}\right)$ for $x^{2}+y^{2}+3 x+6 y+8=0$

$$
\begin{aligned}
x_{1}=-\frac{5}{2} ; y_{1} & =-\frac{9}{2} ; g=\frac{3}{2} ; f=3, c=8 \\
& x\left(-\frac{5}{2}\right)+y\left(-\frac{9}{2}\right)+\frac{3}{2}\left(x-\frac{5}{2}\right)+3\left(y-\frac{9}{2}\right)+8=0 \\
& -\frac{5}{2} x-\frac{9}{2} y+\frac{3}{2} x-\frac{15}{4}+3 y-\frac{27}{2}+8=0 \\
& -10 x-18 y+6 x-15+12 y-54+32=0 \\
& -4 x-6 y-37=0 \\
& 4 x+6 y+37=0
\end{aligned}
$$

4. The continuous random variable X has the cumulative distribution function

$$
F(x)=\left\{\begin{array}{crl}
0, & x & \leq 0 \\
\frac{1}{9}\left(2 x^{2}-\frac{x^{3}}{3}\right) & & 0 x \\
1, & x & \geq 3
\end{array}\right.
$$

a) Find the median
b) Determine the probability density function of X.
c) Hence, find the mode and the mean.
d) State the skewness of the distribution with a reason.

SOLUTION

(4a)

$$
F(x)=\left\{\begin{array}{cr}
0, & x \leq 0 \\
\frac{1}{9}\left(2 x^{2}-\frac{x^{3}}{3}\right) & 0 \leq x \leq 3 \\
1, & x \geq 3
\end{array}\right.
$$

Median:

$$
\begin{aligned}
& F(m)=\frac{1}{2} \\
& \frac{1}{9}\left(2 m^{2}-\frac{m^{3}}{3}\right)=\frac{1}{2} \\
& 2 m^{2}-\frac{m^{3}}{3}=\frac{9}{2} \\
& 12 m^{2}-2 m^{3}=27 \\
& 2 m^{3}-12 m^{2}+27=0
\end{aligned}
$$

From Calculator

$$
m=5.564 \quad \text { or } \quad m=1.7907 \quad \text { or } \quad m=-1.3548
$$

(4b)

$$
\begin{aligned}
& x \leq 0 \\
& f(x)=\frac{d}{d x}(0)=0 \\
& 0 \leq x \leq 3 \\
& f(x)=\frac{d}{d x} \frac{1}{9}\left(2 x^{2}-\frac{x^{3}}{3}\right) \\
& =\frac{1}{9}\left(4 x-x^{2}\right) \\
& =\frac{4}{9} x-\frac{1}{9} x^{2}
\end{aligned}
$$

$$
x \geq 3 \quad f(x)=\frac{d}{d x}(1)=0
$$

$$
f(x)= \begin{cases}\frac{4}{9} x-\frac{1}{9} x^{2} & , \quad 0 \leq x \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

(4c)
$f(x)=\frac{4}{9} x-\frac{1}{9} x^{2}$
$a=-\frac{1}{9}, b=\frac{4}{9} ; c=0$
Maximum point:

$=2$
\therefore Mode: $x=2$

Mean $=E(x)=\int_{-\infty}^{\infty} x f(x) d x$
Mean $=E(x)=\int_{-\infty}^{0} x(0) d x+\int_{0}^{3} x\left(\frac{4}{9} x-\frac{1}{9} x^{2}\right) d x+\int_{3}^{\infty} x(0) d x$

$$
\begin{aligned}
& =\int_{0}^{3} x\left(\frac{4}{9} x-\frac{1}{9} x^{2}\right) d x \\
& =\int_{0}^{3} \frac{4}{9} x^{2}-\frac{1}{9} x^{3} d x \\
& =\left[\frac{4}{27} x^{3}-\frac{1}{36} x^{4}\right]_{0}^{3} \\
& =\left(\frac{4}{27} 3^{3}-\frac{1}{36} 3^{4}\right)-(0) \\
& =4-\frac{9}{4} \\
& =\frac{7}{4}
\end{aligned}
$$

(4d)
Since Mean < Mode, therefore the skewness is skewed to the left.
or
Since Mean < median, therefore the skewness is skewed to the left.

Note:

Positive
Skew
Skewed to
the right

5. The amount of cement packed by a machine is normally distributed with mean 39.3 kg and standard deviation 0.9 kg . A bag of cement is randomly selected.
a) Find the probability that the bag weighs more than 40 kg .
b) If the probability of the bag weighs not more than mg is 0.95 , determine the value of m .
c) A total of 5 bags of cement are chosen at random. Find the probability that at least 4 bags weigh more than 40 kg .

SOLUTION

(5a)

$$
\begin{aligned}
& \mu=39.3 \quad \sigma=0.9 \\
& X \sim N\left(39.3,0.9^{2}\right) \\
& \begin{aligned}
P(X>40) & =P\left(Z>\frac{40-39.3}{0.9}\right) \\
& =P(Z>0.78) \\
& =0.2177
\end{aligned}
\end{aligned}
$$

(5b)
$P(X<m)=0.95$
$P\left(Z<\frac{m-39.3}{0.9}\right)=0.95$
$P\left(Z \geq \frac{m-39.3}{0.9}\right)=0.05$
From statiscal table:

$$
(Z \geq 1.65)=0.05
$$

$\frac{m-39.3}{0.9}=1.65$
$m=40.785$
(5c)

$$
X \sim B(5,0.2177)
$$

$$
\begin{aligned}
P(X \geq 4) & =P(X=4)+P(x=5) \\
& ={ }^{5} C_{4}(0.2177)^{4}(0.7826)^{1}+{ }^{5} C_{5}(0.2177)^{5}(0.7826)^{0} \\
& =0.00928
\end{aligned}
$$

