

SM025/1

Matriculation Programme Examination

Semester 2

Session 2018/2019

- 1. The size of a population of insects is increasing at a rate proportional to the number of insects, N, in time t days which satisfies the equation $\frac{dN}{dt} = kN$, where k > 0. Given that the number of insects at the beginning of an observation is N_0 and is double in 2 days, find the number of insects after 5 days.
- 2. Sketch and shade the region bounded by the curve $y = 4e^{-x}$, the straight line y = 4 x, y axis and x = 3. Hence, find the area of the shaded region by using trapezoidal rule with five ordinates. Give your answer correct to four decimal places.
- 3. Given a circle $x^2 + y^2 + kx + 6y + 8 = 0$, where k is a positive constant.
 - a) Determine the value of k and the centre of the circle if the radius is $\frac{\sqrt{13}}{4}$ unit.
 - b) Find the points of intersection of the circle with straight line y x + 2 = 0. Hence, obtain one of the tangent equation at the point of intersection.
- 4. The continuous random variable X has the cumulative distribution function

$$F(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{9} \left(2x^2 - \frac{x^3}{3} \right) & 0 \le x \le 3\\ 1, & x \ge 3 \end{cases}$$

- a) Find the median
- b) Determine the probability density function of X.
- c) Hence, find the mode and the mean.
- d) State the skewness of the distribution with a reason.
- 5. The amount of cement packed by a machine is normally distributed with mean 39.3kg and standard deviation 0.9kg. A bag of cement is randomly selected.
 - a) Find the probability that the bag weighs more than 40kg.
 - b) If the probability of the bag weighs not more than m kg is 0.95, determine the value of m.
 - c) A total of 5 bags of cement are chosen at random. Find the probability that at least 4 bags weigh more than 40kg.

END OF QUESTION PAPER

1. The size of a population of insects is increasing at a rate proportional to the number of insects, N, in time t days which satisfies the equation $\frac{dN}{dt} = kN$, where k > 0. Given that the number of insects at the beginning of an observation is N_0 and is double in 2 days, find the number of insects after 5 days.

SOLUTION

$$\frac{dN}{dt} = kN$$

$$\frac{dN}{N} = kdt$$

$$\int \frac{dN}{N} = \int kdt$$

$$\ln N = kt + C$$

$$N = e^{kt+c}$$

$$N = Ae^{kt}$$
Given that when
$$t = 0; \quad N = N_c$$

$$N_o = Ae^{k(0)}$$

$$A = N_o$$

$$t=2; \quad N=2N_o,$$

$$2N_o=N_oe^{k(2)}$$

 $2N_o$

 $A = N_o$

$$e^{2k} = \frac{2N_o}{N_o}$$
$$e^{2k} = 2$$
$$2k = \ln 2$$
$$k = \frac{\ln 2}{2} = 0.3466$$

When
$$t = 5$$
:
 $N = N_0 e^{0.3466(5)}$

 $= 5.66 N_o$

2. Sketch and shade the region bounded by the curve $y = 4e^{-x}$, the straight line y = 4 - x, y - axis and x = 3. Hence, find the area of the shaded region by **using trapezoidal rule** with five ordinates. Give your answer correct to four decimal places.

- 3. Given a circle $x^2 + y^2 + kx + 6y + 8 = 0$, where k is a positive constant.
 - a) Determine the value of k and the centre of the circle if the radius is $\frac{\sqrt{13}}{2}$ unit.
 - b) Find the points of intersection of the circle with straight line y x + 2 = 0. Hence, obtain one of the tangent equations at the point of intersection.

SOLUTION

Equation of Circle (3a) $x^2 + y^2 + 2gx + 2fy + c = 0$ $x^2 + y^2 + kx + 6y + 8 = 0$ Where $2g = k \qquad 2f = 6 \qquad c = 8$ $g = \frac{k}{2}$ f = 3 $r = \sqrt{f^2 + g^2 - c}$ Center, C = (-g, -f) $r = \sqrt{f^2 + g^2 - c}$ $\frac{\sqrt{13}}{2} = \sqrt{3^2 + \left(\frac{k}{2}\right)^2 - 8}$ $\frac{\sqrt{13}}{2} = \sqrt{1 + \frac{k^2}{4}}$ $\frac{13}{4} = 1 + \frac{k^2}{4}$ $\frac{k^2}{4} = \frac{13}{4}$ - 1 $k = 3 \ (k > 0)$ Center of the circle = $(-g, -f) = \left(-\frac{3}{2}, -3\right)$

(3b)

Equation of circle

 $x^2 + y^2 + 3x + 6y + 8 = 0 \qquad (1)$

Equation of straight line

y - x + 2 = 0y = x - 2(2)

Substitute (2) into (1)

 $x^{2} + (x - 2)^{2} + 3x + 6(x - 2) + 8 = 0$ $x^{2} + x^{2} - 4x + 4 + 3x + 6x - 12 + 8 = 0$ $2x^{2} + 5x = 0$ x(2x + 5) = 0 $x = 0 \quad or \quad x = -\frac{5}{2}$ $y = -2 \quad or \quad y = -\frac{9}{2}$

Therefore the intersection points are (0, -2) and $\left(-\frac{5}{2}, -\frac{9}{2}\right)$.

Equation of tanget at (0, -2) for $x^2 + y^2 + 3x + 6y + 8 = 0$ $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

$$x_1 = 0; y_1 = -2; g = \frac{3}{2}; f = 3, c = 8$$

$$x(0) + y(-2) + \frac{3}{2}(x+0) + 3(y-2) + 8 = 0$$

-2y + $\frac{3}{2}x + 3y - 6 + 8 = 0$
y + $\frac{3}{2}x + 2 = 0$
2y + 3x + 4 = 0

or

Equation of tanget at
$$\left(-\frac{5}{2}, -\frac{9}{2}\right)$$
 for $x^2 + y^2 + 3x + 6y + 8 = 0$
 $x_1 = -\frac{5}{2}$; $y_1 = -\frac{9}{2}$; $g = \frac{3}{2}$; $f = 3, c = 8$
 $x\left(-\frac{5}{2}\right) + y\left(-\frac{9}{2}\right) + \frac{3}{2}\left(x - \frac{5}{2}\right) + 3\left(y - \frac{9}{2}\right) + 8 = 0$
 $-\frac{5}{2}x - \frac{9}{2}y + \frac{3}{2}x - \frac{15}{4} + 3y - \frac{27}{2} + 8 = 0$
 $-10x - 18y + 6x - 15 + 12y - 54 + 32 = 0$
 $-4x - 6y - 37 = 0$
 $4x + 6y + 37 = 0$

4. The continuous random variable X has the cumulative distribution function

$$F(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{9} \left(2x^2 - \frac{x^3}{3} \right) & 0 \le x \le 3\\ 1, & x \ge 3 \end{cases}$$

- a) Find the median
- b) Determine the probability density function of X.
- c) Hence, find the mode and the mean.
- d) State the skewness of the distribution with a reason.

SOLUTION

(4a)

$$F(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{9} \left(2x^2 - \frac{x^3}{3} \right) & 0 \le x \le 3\\ 1, & x \ge 3 \end{cases}$$

Median:

Median:

$$F(m) = \frac{1}{2}$$

$$\frac{1}{9} \left(2m^2 - \frac{m^3}{3} \right) = \frac{1}{2}$$

$$2m^2 - \frac{m^3}{3} = \frac{9}{2}$$

$$12m^2 - 2m^3 = 27$$

$$2m^3 - 12m^2 + 27 = 0$$
From Calculator
 $m = 5.564$ or $m = 1.7907$ or $m = -1.3548$
 \therefore median = 1.7907

(4b) $x \leq 0$ $f(x) = \frac{d}{dx}(0) = 0$ $0 \le x \le 3$ $f(x) = \frac{d}{dx9} \left(2x^2 - \frac{x^3}{3} \right)$ $=\frac{1}{9}(4x-x^2)$ $=\frac{4}{9}x-\frac{1}{9}x^2$ $x \ge 3$ $f(x) = \frac{d}{dx}(1) = 0$ $f(x) = \begin{cases} \frac{4}{9}x - \frac{1}{9}x^2 & , & 0 \le x \le 3\\ 0 & , & otherwise \end{cases}$ (4c) $f(x) = \frac{4}{9}x - \frac{1}{9}x^2$ 0.4 $a = -\frac{1}{9}, b = \frac{4}{9}; c = 0$ 0.3 Maximum point: 0.2-2a0.1 0-1 0 = 2 \therefore *Mode*: x = 2

$$Mean = E(x) = \int_{-\infty}^{\infty} x f(x) dx$$
$$Mean = E(x) = \int_{-\infty}^{0} x (0) dx + \int_{0}^{3} x \left(\frac{4}{9}x - \frac{1}{9}x^{2}\right) dx + \int_{3}^{\infty} x (0) dx$$

CHOW CHOON WOOI

$$= \int_{0}^{3} x \left(\frac{4}{9}x - \frac{1}{9}x^{2}\right) dx$$

$$= \int_{0}^{3} \frac{4}{9}x^{2} - \frac{1}{9}x^{3} dx$$

$$= \left[\frac{4}{27}x^{3} - \frac{1}{36}x^{4}\right]_{0}^{3}$$

$$= \left(\frac{4}{27}3^{3} - \frac{1}{36}3^{4}\right) - (0)$$

$$= 4 - \frac{9}{4}$$

$$= \frac{7}{4}$$

(4d)

Since Mean < Mode, therefore the skewness is skewed to the left.

or

Since Mean < median, therefore the skewness is skewed to the left.

- 5. The amount of cement packed by a machine is normally distributed with mean 39.3kg and standard deviation 0.9kg. A bag of cement is randomly selected.
 - a) Find the probability that the bag weighs more than 40kg.
 - b) If the probability of the bag weighs not more than m kg is 0.95, determine the value of m.
 - c) A total of 5 bags of cement are chosen at random. Find the probability that at least 4 bags weigh more than 40kg.

SOLUTION

(5a)

$$\mu = 39.3 \quad \sigma = 0.9$$

$$X \sim N(39.3, 0.9^2)$$

$$P(X > 40) = P\left(Z > \frac{40 - 39.3}{0.9}\right)$$

$$= P(Z > 0.78)$$

$$= 0.2177$$

(5b)

$$P(X < m) = 0.95$$

$$P\left(Z < \frac{m - 39.3}{0.9}\right) = 0.95$$

$$P\left(Z \ge \frac{m - 39.3}{0.9}\right) = 0.05$$

From statiscal table:

$$(Z \ge 1.65) = 0.05$$

$$\frac{m - 39.3}{0.9} = 1.65$$

$$m = 40.785$$

(5c)

$$X \sim B(5, 0.2177)$$

$$P(X \ge 4) = P(X = 4) + P(x = 5)$$

$$= {}^{5}C_{4}(0.2177)^{4}(0.7826)^{1} + {}^{5}C_{5}(0.2177)^{5}(0.7826)^{0}$$

$$= 0.00928$$