

QS 015

Mid-Semester Examination

Semester I

Session 2015/2016

- 1. Simplify $\frac{3+\sqrt{3}}{2+\sqrt{3}} \frac{1-\sqrt{3}}{3-\sqrt{3}}$ in the form $a + b\sqrt{c}$ where a, b and $c \in \mathcal{R}$.
- 2. Obtain the solution set for $x 1 \le x^2 + 3x \le x + 3$.
- 3.(a) Write $z = -\sqrt{2} \sqrt{2}i$ in the polar form.
 - (b) Express $\frac{z \bar{z} 5i}{2 + i}$ in the form a + bi where z = -1 + 3i and \bar{z} is a conjugate of z.
- 4. Solve $log_3 (3x + 10) 1 = \frac{3}{log_2 3} log_3 3x$.

5. (a) Given an arithmetic series is $\left(\frac{1}{12}\right) + \left(-\frac{1}{6}\right) + \left(-\frac{5}{12}\right) + \left(-\frac{2}{3}\right) + \dots + \left(-\frac{43}{6}\right)$.

Find

- (i) The number of terms in the above series.
- (ii) The sum of all terms.
- (b) (i) Express $(16 + 32x)^{\frac{3}{4}}$ in the form $a(1 + bx)^{\frac{3}{4}}$ where $a \text{ an } b \in \mathcal{R}$. Hence, find the expansion of $(16 + 32x)^{\frac{3}{4}}$ in ascending powers of x up to the term in x^3 .
- (ii) By substituting x = 0.01, evaluate $(1.02)^{\frac{3}{4}}$ correct to three decimal places.
- 6.(a) Given matrix $A = \begin{bmatrix} 10 & 7 & 4 \\ 10 & 5 & 2 \\ 5 & 4 & 3 \end{bmatrix}$ and matrix $B = \begin{bmatrix} -7 & 5 & 6 \\ 20 & -10 & -20 \\ -15 & 5 & 20 \end{bmatrix}$ such that AB=mI,

where m is a constant and I is the 3 x 3 identity matrix. Determine the value of m and deduce A^{-1} .

(b) A factory produces three new paints, P, Q and R by mixing white, red and yellow colours of paint according to a certain amount. The amount of colours(in litre) for a tin of paint is given in the following table:

	White(litre)	Red(litre)	Yellow(litre)
Р	10	7	4
Q	10	5	2
R	5	4	3

The cost to produce a tin of paint P, Q and R are RM264, RM200 and RM158 respectively while the cost of a litre of white, red and yellow paint cost RM x, Rm y and RM z respectively.

- (i) Obtain a system of linear equations to represent the above information.Hence, write down the matrix equation.
- (ii) By using the result from (a), determine the cost of one litre of white, red and yellow paint used in the production of the new paints.

1) Simplify
$$\frac{3+\sqrt{3}}{2+\sqrt{3}} - \frac{1-\sqrt{3}}{3-\sqrt{3}}$$
 in the form $a + b\sqrt{c}$ where $a, b \ anc \ c \in \mathcal{R}$.

SOLUTION

$$\frac{3+\sqrt{3}}{2+\sqrt{3}} - \frac{1-\sqrt{3}}{3-\sqrt{3}} = \frac{(3+\sqrt{3})(3-\sqrt{3})-(1-\sqrt{3})(2+\sqrt{3})}{6-2\sqrt{3}+3\sqrt{3}-3}$$
$$= \frac{(9-3\sqrt{3}+3\sqrt{3}-3)-(2+\sqrt{3}-2\sqrt{3}-3)}{3+\sqrt{3}}$$
$$= \frac{9-3\sqrt{3}+3\sqrt{3}-3)-(2+\sqrt{3}-2\sqrt{3}-3)}{3+\sqrt{3}}$$
$$= \frac{9-3\sqrt{3}+3\sqrt{3}-3-2-\sqrt{3}+2\sqrt{3}+3}{3+\sqrt{3}}$$
$$= \frac{7+\sqrt{3}}{3+\sqrt{3}}$$
$$= \frac{7+\sqrt{3}}{3+\sqrt{3}}$$
$$= \frac{7+\sqrt{3}}{3+\sqrt{3}}$$
$$= \frac{(7+\sqrt{3})(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}$$
$$= \frac{21-7\sqrt{3}+3\sqrt{3}-3}{9-3\sqrt{3}+3\sqrt{3}-3}$$
$$= \frac{18-4\sqrt{3}}{6}$$
$$= \frac{18}{6} - \frac{4\sqrt{3}}{6}$$
$$= 3 - \frac{2\sqrt{3}}{3}$$

2) Obtain the solution set for $x - 1 \le x^2 + 3x \le x + 3$.

SOLUTION

 $x-1 \leq x^2 + 3x \leq x+3$

- 3) (a) Write $z = -\sqrt{2} \sqrt{2} i$ in the polar form.
 - (b) Express $\frac{z \bar{z} 5i}{2 + i}$ in the form a + bi where z = -1 + 3i and \bar{z} is a conjugate of z.

SOLUTION

(a)
$$z = -\sqrt{2} - \sqrt{2} i$$

 $r = |z| = \sqrt{(-\sqrt{2})^2 + (-\sqrt{2})^2} = 2$
 $\alpha = tan^{-1}\frac{\sqrt{2}}{\sqrt{2}} = \frac{\pi}{4}$
 $\theta = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$
Polar form: $z = r(\cos\theta + i\sin\theta)$
 $= 2\left[\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right]$
 $1^{\text{st}} Q: \theta = \alpha$
 $2^{\text{rd}} Q: \theta = \pi - \alpha$
 $3^{\text{rd}} Q: \theta = -\pi + \alpha$
 $4^{\text{th}} Q: \theta = -\alpha$

(b)
$$\frac{z \, \bar{z} - 5i}{2 + i} = \frac{(-1 + 3i)(-1 - 3i) - 5i}{2 + i}$$
$$= \frac{(1 + 3i - 3i - 9i^2) - 5i}{2 + i}$$
$$= \frac{(1 - 9(-1)^2) - 5i}{2 + i}$$
$$= \frac{10 - 5i}{2 + i}$$
$$= \frac{10 - 5i}{2 + i}$$
$$= \frac{(10 - 5i)(2 - i)}{(2 + i)(2 - i)}$$
$$= \frac{20 - 10i - 10i + 5i^2}{4 - 2i + 2i - i^2}$$
$$= \frac{20 - 20i - 5}{4 + 1}$$

Chow Choon Wooi

4) Solve
$$log_3 (3x + 10) - 1 = \frac{3}{log_2 3} - log_3 3x$$
.

SOLUTION

$$log_{3} (3x + 10) - 1 = \frac{3}{log_{2}3} - log_{3}3x$$

$$log_{3} (3x + 10) - 1 = \frac{3}{log_{3}3} - log_{3}3x$$

$$log_{3} (3x + 10) - 1 = \frac{3log_{3}2}{log_{3}3} - log_{3}3x$$

$$log_{3} (3x + 10) - 1 = \frac{3log_{3}2}{1} - log_{3}3x$$

$$log_{3} (3x + 10) - 1 = 3log_{3}2 - log_{3}3x$$

$$log_{3} (3x + 10) - 3log_{3}2 + log_{3}3x = 1$$

$$log_{3} (3x + 10) - log_{3}2^{3} + log_{3}3x = 1$$

$$log_{3} \frac{(3x + 10)(3x)}{2^{3}} = 1$$

$$log_{3} \frac{(9x^{2} + 30x)}{8} = 3^{1}$$

$$9x^{2} + 30x = 24$$

$$9x^{2} + 30x - 24 = 0$$

$$(9x - 6)(x + 4) = 0$$

$$x = \frac{6}{9} \text{ or } x = -4$$

Since $x > 0$, $\therefore x = \frac{2}{3}$

1

1

$$\log_a b = \frac{\log_c b}{\log_c a} \rightarrow \log_2 3 = \frac{\log_3 3}{\log_3 2}$$

 $\log_a a = 1 \Rightarrow \log_3 3 = 1$

$$a \log b = \log b^a \rightarrow 3log_3 2 = log_3 2^3$$

$$\log_a b = c \Rightarrow b = a^c$$

5) (a) Given an arithmetic series is $\left(\frac{1}{12}\right) + \left(-\frac{1}{6}\right) + \left(-\frac{5}{12}\right) + \left(-\frac{2}{3}\right) + \dots + \left(-\frac{43}{6}\right)$. Find

- (i) The number of terms in the above series.
- (ii) The sum of all terms.
- (b) (i) Express $(16 + 32x)^{\frac{3}{4}}$ in the form $a(1 + bx)^{\frac{3}{4}}$ where $a \text{ an } b \in \mathcal{R}$. Hence, find the expansion of $(16 + 32x)^{\frac{3}{4}}$ in ascending powers of x up to the term in x^{3} .
 - (ii) By substituting x = 0.01, evaluate $(1.02)^{\frac{3}{4}}$ correct to three decimal places.

SOLUTION

a) i)
$$(\frac{1}{12}) + (-\frac{1}{6}) + (-\frac{5}{12}) + (-\frac{2}{3}) + \dots + (-\frac{43}{6})$$

$$a = (\frac{1}{12}), \qquad d = T_2 - T_1 = (-\frac{1}{6}) - (\frac{1}{12}) = -\frac{1}{4}$$

$$T_n = a + (n - 1)d$$

$$(-\frac{43}{6}) = (\frac{1}{12}) + (n - 1)(-\frac{1}{4})$$

$$(-\frac{43}{6}) = (\frac{1}{12}) + (\frac{1}{4}n + \frac{1}{4})$$

$$-\frac{43}{6} = \frac{1}{12} + \frac{1}{4}n + \frac{1}{4}$$

$$\frac{1}{4}n = \frac{1}{12} + \frac{1}{4} + \frac{43}{6}$$

$$\frac{1}{4}n = \frac{15}{2}$$

$$n = \frac{15}{2}x 4$$

$$n = 30$$

a) ii)
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $S_{30} = \frac{30}{2} \Big[2 \Big(\frac{1}{12} \Big) + (30-1) \Big(-\frac{1}{4} \Big) \Big]$

Chow Choon Wooi

$$S_{30} = 15 \left[\left(\frac{1}{6} \right) + (29) \left(-\frac{1}{4} \right) \right]$$

$$S_{30} = \frac{-425}{4} \text{ or } -106.25$$
b) i) $(16 + 32x)^{\frac{3}{4}} = \left[16 \left(1 + \frac{32x}{16} \right) \right]^{\frac{3}{4}}$

$$= 16^{\frac{3}{4}} \left(1 + \frac{32x}{16} \right)^{\frac{3}{4}}$$

$$= 8(1 + 2x)^{\frac{3}{4}}$$
 $(16 + 32x)^{\frac{3}{4}} = 8(1 + 2x)^{\frac{3}{4}}$

$$= 8 \left[1 + \frac{\left(\frac{3}{4} \right)}{1!} (2x)^{1} + \frac{\left(\frac{3}{4} \right) \left(-\frac{1}{4} \right)}{2!} (2x)^{2} + \frac{\left(\frac{3}{4} \right) \left(-\frac{1}{4} \right) \left(-\frac{5}{4} \right)}{3!} (2x)^{3} \right]$$

$$= 8 \left[1 + \frac{3}{2}x - \frac{3}{8}x^{2} + \frac{5}{16}x^{3} + \cdots \right]$$

b) ii)
$$x = 0.01$$

 $8(1+2x)^{\frac{3}{4}} = 8\left[1+\frac{3}{2}x-\frac{3}{8}x^2+\frac{5}{16}x^3+\cdots\right]$
 $8[1+2(0.01)]^{\frac{3}{4}} = 8\left[1+\frac{3}{2}(0.01)-\frac{3}{8}(0.01)^2+\frac{5}{16}(0.01)^3+\cdots\right]$
 $[1+2(0.01)]^{\frac{3}{4}} = \left[1+\frac{3}{2}(0.01)-\frac{3}{8}(0.01)^2+\frac{5}{16}(0.01)^3+\cdots\right]$
 $[1.02]^{\frac{3}{4}} = 1.014963$
 $[1.02]^{\frac{3}{4}} = 1.015$ (3 decimal places)

6) (a) Given matrix $A = \begin{bmatrix} 10 & 7 & 4 \\ 10 & 5 & 2 \\ 5 & 4 & 3 \end{bmatrix}$ and matrix $B = \begin{bmatrix} -7 & 5 & 6 \\ 20 & -10 & -20 \\ -15 & 5 & 20 \end{bmatrix}$ such that

AB=mI, where m is a constant and I is the 3 x 3 identity matrix. Determine the value of m and deduce A^{-1} .

(b) A factory produces three new paints, P, Q and R by mixing white, red and yellow colours of paint according to a certain amount. The amount of colours(in litre) for a tin of paint is given in the following table:

	White(litre)	Red(litre)	Yellow(litre)
Р	10	7	4
Q	10	5	2
R	5	4	3

The cost to produce a tin of paint P, Q and R are RM264, RM200 and RM158 respectively while the cost of a litre of white, red and yellow paint cost RM x, Rm y and RM z respectively.

- (i) Obtain a system of linear equations to represent the above information.Hence, write down the matrix equation.
- (ii) By using the result from (a), determine the cost of one litre of white, red and yellow paint used in the production of the new paints.

SOLUTION

6a)
$$A = \begin{bmatrix} 10 & 7 & 4 \\ 10 & 5 & 2 \\ 5 & 4 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} -7 & 5 & 6 \\ 20 & -10 & -20 \\ -15 & 5 & 20 \end{bmatrix}$$
$$AB = \begin{bmatrix} 10 & 7 & 4 \\ 10 & 5 & 2 \\ 5 & 4 & 3 \end{bmatrix} \begin{bmatrix} -7 & 5 & 6 \\ 20 & -10 & -20 \\ -15 & 5 & 20 \end{bmatrix}$$
$$AB = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}$$
$$AB = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}$$
$$AB = 10I$$
$$m = 10$$

$$AB = 10I$$

$$A^{-1} = \frac{1}{10}B$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} -7 & 5 & 6\\ 20 & -10 & -20\\ -15 & 5 & 20 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{7}{10} & \frac{1}{2} & \frac{3}{5}\\ 2 & -1 & -2\\ -\frac{3}{2} & \frac{1}{2} & 2 \end{bmatrix}$$

6bi)
$$10x + 7y + 4z = 264$$
$$10x + 5y + 2z = 200$$
$$5x + 4y + 3z = 158$$
$$\begin{bmatrix} 10 & 7 & 4\\ 10 & 5 & 2\\ 5 & 4 & 3 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 264\\ 200\\ 158 \end{bmatrix}$$

6bii)
$$X = A^{-1}D$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{7}{10} & \frac{1}{2} & \frac{3}{5} \\ 2 & -1 & -2 \\ -\frac{3}{2} & \frac{1}{2} & 2 \end{bmatrix} \begin{bmatrix} 264 \\ 200 \\ 158 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 12 \\ 20 \end{bmatrix}$$

$$\therefore x = RM10, \quad y = RM12, \quad z = RM20$$